

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 14 (2006) 5578–5583

4'-Fluorinated carbocyclic nucleosides: Synthesis and inhibitory activity against S-adenosyl-L-homocysteine hydrolase

Yukio Kitade, a,b,c,* Takayuki Ando, Tsuyoshi Yamaguchi, Ayumi Hori, Masayuki Nakanishi and Yoshihito Ueno Hori, Ueno Masayuki Nakanishi and Yoshihito Ueno Masayuki Nakanishi Masayuki Nakanishi Nakani

^aDepartment of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan

^bCenter for Emerging Infectious Diseases, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan

^cCenter for Advanced Drug Research, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan

Received 11 November 2005; revised 14 April 2006; accepted 14 April 2006 Available online 6 May 2006

Abstract—4'-Fluorinated analogue of 9-[(1'R,2'S,3'R)-2',3'-dihydroxy-cyclopentan-1'-yl]adenine (DHCaA) and their related analogues were systematically synthesized under the Mitsunobu and palladium(0) coupling conditions followed by fluorination with inversion of the configuration by using diethylaminosulfur trifluoride, respectively. 4'-β-Fluoro DHCaA and 2-amino-4'-α-fluoro DHCaA demonstrated slight inhibitory activity against human and *Plasmodium falciparum S*-adenosyl-L-homocysteine hydrolase, respectively.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Carbocyclic nucleosides¹ are a group of compounds structurally analogous to natural and synthetic nucleosides in which the furanose oxygen has been replaced by a methylene group. This replacement changes the furanose ring into a cyclopentane. Conformationally, the expected similarity in bond lengths and bond angles of the tetrahydrofuran and cyclopentane rings allows these analogues to behave as substrates or inhibitors of the enzymes in living cells. Therefore, it has been reported that the carbocyclic nucleosides possess a wide range of biological activities such as antiviral,^{2,3} antitumor,^{2,3} antiparasitic,⁴ antiarthritic⁵, and immunosuppressive^{5,6} effects.

In the meantime, the partial fluorination of carbocyclic nucleoside has attracted our attention because of the remarkable fact that the introduction of a fluorine atom into the parent compound increases the biological activity. For example, 2'- or 6'-fluorocarbocyclic guanosine (1 and 2) had antiviral activity against herpes simplex virus types I and II. 9,10

Keywords: Carbocyclic nucleoside; Fluoro carbocyclic nucleoside; Enzyme inhibitor.

Based on this information, we designed fluorinated analogues of carbocyclic nucleoside as S-adenosyl-L-homocysteine (SAH) hydrolase inhibitor, especially focusing on the modification at the 4'-position of the cyclopentane ring due to the necessity of cis-configuration of the 2',3'-hydroxyl group for the inhibition. Although the synthesis of 4'-modified carbocyclic nucleoside, such as amino, \$^{11}epimeric, \$^{12}\$ deoxy (DHCaA, 3)\$^{13}\$, and \$^{11}9-fluoro (4)\$^{14}\$ analogues, has been reported previously, their inhibitory activities against SAH hydrolase were not investigated.

In view of these facts, we described herein a systematic synthesis of 4'-β-fluoro DHCaA 4 and the related analogues 5–7 as well as the inhibitory activities against SAH hydrolase (Fig. 1).

2. Chemistry

The synthetic routes for the preparation of 4'-fluoro DHCaA analogues are shown in Scheme 1. The Mitsunobu coupling is the most useful and common method for the direct substitution of the hydroxyl group with inversion of the configuration. $4'-\alpha$ -Acetoxy carbocyclic nucleoside $9^{15,16}$ was prepared by the coupling reaction of allylic alcohol 8 with adenine under the Mitsunobu coupling¹⁷ conditions (61%). Treatment of 9 with methanolic ammonia readily gave the corresponding

^{*}Corresponding author. Tel./fax: +81 58 293 2640; e-mail: kitade@biomol.gifu-u.ac.jp

Figure 1. Carbocyclic nucleosides.

deacetylated compound **10**¹⁶ (91%). The fluorination by using diethylaminosulfur trifluoride (DAST)¹⁸ with inversion of the configuration gave 4'-β-fluorinated compound **11** (40%). The following treatment with osmium tetraoxide (OsO₄) in the presence of 4-methylmorpholine *N*-oxide (NMO)¹⁹ afforded the desired target compound **4**¹⁴ (78%). Similarly, coupling reaction of **8** with 2-amino-6-chloropurine instead of adenine afforded **12** (52%); subsequent treatment of **12** with methanolic ammonia for the deprotection of the acetyl group and the amination of the 6-chloro group gave **13** (72%). 4'-Fluorination of **13** with DAST afforded **14** (32%), followed by osmium oxidation to give 2-amino-4'-β-fluoro DHCaA **5** (63%).

Alternatively, tetrakis(triphenylphosphine)palladium $[(PPh_3)_4Pd/PPh_3]$ catalyst²⁰ was used to substitute the allylic ester with retention of the configuration. The coupling reaction of **8** with N^6 -benzoyladenine by using the palladium catalyst gave **15** (52%); subsequent deprotection by methanolic ammonia afforded **16**¹⁵ (95%).

The 4'-β-hydroxyl group of **16** was converted to a fluorine substituent by DAST with inversion of the configuration to give 4'-α-fluoro compound **17** (49%); the following oxidation led to 4'-α-fluoro DHCaA **6** (71%). Likewise, 2-amino-4'-α-fluoro DHCaA **7** was obtained from the coupling product **18**²¹ which was aminated, fluorinated, and oxidized in moderate yield as described.

The structures of these compounds were supported by spectral data (¹H NMR, differential NOE, ¹³C NMR, MS, and HRMS) and microanalytical data.

3. Biological assay

Inhibitory activities of 4'-fluoro carbocyclic nucleosides against human SAH hydrolase (HsSAHH) and *Plasmodium falciparum* SAH hydrolase (PfSAHH) are summarized in Table 1. Compounds 4 and 7 showed inhibitory activity against HsSAHH with IC₅₀ value of 200 μ M and PfSAHH with that of 220 μ M, respectively. Other compounds did not display any inhibitory activity up to 1000 μ M.

However, the introduction of a fluorine atom to 4'- α position of cyclopentane ring (7) caused the reduction of each inhibitory activity, it increased the selective index (IC₅₀ of HsSAHH/IC₅₀ of PfSAHH), more than

Table 1. Inhibitory activities of carbocyclic nucleosides against human and *Plasmodium falciparum* SAH hydrolases (SAHH)

Entry	Human SAHH IC ₅₀ (μM)	P. falciparum SAHH IC ₅₀ (μM)	Selective index
3	9.0	18	0.5
4	200	ND^a	< 0.2
5	ND^a	ND^a	_
6	ND^a	ND^a	_
7	ND^a	220	> 4.5

^a No inhibitory activity showed at 1000 μM.

Scheme 1. Reagents and conditions: (i) adenine (for 9) or 2-amino-6-chloropurine (for 12), Ph₃P, DEAD, THF, rt; (ii) NH₃, MeOH, rt (for 10), 55 °C (for 16), 100 °C (for 13 and 19); (iii) DAST, CH₂Cl₂, 0 °C; (iv) OsO₄, NMO, THF–H₂O, rt; (v) N⁶-benzoyladenine (for 15) or 2-amino-6-chloropurine (for 18), NaH, (Ph₃P)₄Pd, Ph₃P, DMSO, THF, 55 °C.

4.5. In the meantime, 4'- β -fluorine substituent of 4 had an effect for the inhibitory activity against only HsSAHH, and the selective index was less than 0.2.

4. Discussion

The inhibitory activity of 4 against HsSAHH and that of 7 against PfSAHH were less than one-tenth of that of DHCaA 3, however, both 4'-α- and 4'-β-fluorine substituents were effective for selective inhibition against PfSAHH and HsSAHH, respectively. In our previous work²³ on the crystallization of each SAHH holding noraristeromycin analogue, we clarified that Thr60 of HsSAHH and Cys59 of PfSAHH, which located around 2-position of adenine moiety, were the key residues for selective inhibition. The important amino acid residue around 4'-hydroxyl group of sugar moiety is still unclear. Based on these notions, it is suggested that there is a difference of the specific binding site, or characteristic depression.

In this paper, we demonstrated the synthesis of fluorinated carbocyclic nucleosides and their inhibitory activities against HsSAHH and PfSAHH. These results will contribute greatly to the design of potent inhibitors against PfSAHH.

5. Experimental

5.1. General procedure

Melting points were recorded on a Yanaco Micro Melting Point Apparatus. Elemental analyses were carried out at the microanalytical laboratory of Gifu Pharmaceutical University. ¹H and ¹³C spectra were recorded at 400 MHz on a JEOL JNM α400 (operated at 400 and 100 MHz, respectively) using CDCl₃ with TMS as internal standard or DMSO- d_6 . The spin multiplicities are indicated by the symbols s (singlet), d (doublet), dd (doublet of doublet), t (triplet), m (multiplet), and br (broad). Coupling constants (J) are expressed in hertz. The differential nuclear overhauser effect (DIFNOE) data were described; the irradiated proton (the correlated proton: % of enhancement value). Mass spectra (MS and HRMS) were recorded at a 70 eV on JEOL JMS-D300 spectrometer and Shimadzu QP 1000 A. Reactions were monitored by thin-layer chromatography (TLC) using MERCK silica gel 60 F₂₅₄. Column chromatography was carried out on silica gel (Wako gel C-300).

5.1.1. 9-[(1'R,4'S)-4'-Fluoro-2'-cyclopenten-1'-yl]-9-H-adenine (11). To a stirred solution of compound 10 (264 mg, 1.22 mmol) in CH₂Cl₂ (53 mL) at 0 °C, DAST (0.78 mL, 5.89 mmol) was added and the mixture was stirred for 3 h. The mixture was poured into saturated aqueous NaHCO₃ and then the aqueous phase was extracted with CHCl₃, dried with Na₂SO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography eluting with hexane/EtOAc (45:1) and then the fractions were evaporated under reduced pressure.

Compound **11** was obtained (107 mg, 40%): mp 160–162 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.38 (s, 1H, H-2), 7.85 (s, 1H, H-8), 6.41 (m, 1H, H-3'), 6.30 (m, 1H, H-2'), 5.79–5.67 (m, 4H, H-1', H-4' and NH₂), 3.04 (m, 1H, H-5'), 2.13 (m, 1H, H-5'); ¹³C NMR (CDCl₃, 100 MHz) δ 155.38, 152.69, 138.75, 138.32, 137.00, 136.10 (d, J = 8.6), 135.06 (d, J = 17.2), 95.10 (d, J = 174.4), 39.20 (d, J = 21.4), 29.51 (d, J = 33.8); mass (EI) m/z: 219 (M⁺), 199, 198, 173, 151; HRMS (EI) calcd for C₁₀H₁₀FN₅: 219.0920, found: 219.0928; Anal. Calcd for C₁₀H₁₀FN₅: C, 54.79; H, 4.60; N, 31.95. Found: C, 54.63; H, 4.61; N, 31.78.

5.1.2. 9-[(1'R,2'S,3'R,4'R)-2', 3'-Dihydroxy-4'-fluorocyclopentan-1'-yl|-9-H-adenine (4). To a stirred solution of compound 11 (113 mg, 514 µmol) and N-methylmorpholine N-oxide (NMO, 152 mg, 1.3 mmol) in THF (7.4 mL) and H_2O (0.74 mL), 2% OsO₄ solution (1.3 mL, 0.10 mmol) was added and stirred at room temperature for 21 h. The mixture was evaporated under reduced pressure and the residue was purified by silica gel column chromatography eluting with CHCl3/MeOH (30:1–10:1). Compound 4 was obtained (102 mg, 78%): mp 128–130 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.16 (s, 1H, H-2), 8.12 (s, 1H, H-8), 7.21 (s, 2H, NH₂), 5.35 (d, 1H, OH-2'), 5.24 (d, 1H, OH-3'), 4.92 (m, 1H, H-4'), 4.70 (m, 1H, H-1'), 4.59 (m, 1H, H-2'), 4.00 (dd, 1H, H-3'), 2.73 (m, 1H, H-5' α), 2.27 (m, 1H, H-5'_β); DIFNOE: H-1' (H-5'_α: 5.8%), H-3' (H-2': 2.9%), H-4' (H-5'_α: 4.6%), ¹³C NMR (DMSO- d_6 , 100 MHz) δ 156.06, 152.26, 149.70, 140.42, 119.37, 95.12 (d, J = 191.7), 73.82 (d, J = 4.9), 72.05 (d, J = 7.4), 57.95 (d, J = 3.3), 33.36 (d, J = 22.3); mass (EI) m/z: 253 (M⁺), 236, 216, 204, 192; HRMS (EI) calcd for C₁₀H₁₂FN₅O₂: 253.0975, found: 253.0969; Anal. Calcd for C₁₀H₁₂FN₅O₂: C, 47.43; H, 4.78; N, 27.66. Found: C, 47.49; H, 4.74; N, 27.46.

5.1.3. 9-[(1'R,4'R)-4'-Acetoxy-2'-cyclopenten-1'-yl]-9-H-2-amino-6-chloropurine (12). This compound was prepared by an analogous method for the preparation of compound 9. To a solution of 8 (402 mg, 2.83 mmol), Ph₃P (1480 mg, 5.65 mmol), and 2-amino-6-chloropurine (968 mg, 5.71 mmol) in THF, 40% diethyl azodicarboxylate solution (DEAD, 2.6 mL, 5.5 mmol) was added and stirred at room temperature for 21 h. The reaction mixture was evaporated under reduced pressure and the crude product was purified by silica gel column chromatography eluting with CHCl₃/MeOH (200:1–100:1). The fractions were evaporated under reduced pressure. Compound 12 was obtained (428 mg, 52%): mp 147– 148 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.70 (s, 1H, H-8), 6.34 (m, 1H, H-3'), 6.17 (m, 1H, H-2'), 5.97 (m, 1H, H-1'), 5.75 (m, 1H, H-4'), 5.10 (s, 2H, NH₂), 2.56 (m, 1H, H-5'), 2.40 (m, 1H, H-5'), 1.63 (s, 3H, COCH₃); Anal. Calcd for C₁₂H₁₂ClN₅O₂·1/4 H₂O: C, 48.33; H, 4.22; N, 23.48. Found: C, 48.46; H, 4.10; N, 23.29.

5.1.4. 9-[(1'R,4'R)-4'-Hydroxy-2'-cyclopenten-1'-yl]-9-H-2-aminoadenine (13). Compound 12 (204 mg, 695 µmol) was treated with methanolic ammonia (50 mL) at 100 °C in a sealed tube for 63 h. The reaction mixture was evaporated under reduced pressure and purified by

silica gel column chromatography eluting with CHCl₃/MeOH (25:1–10:1). Compound **13** was obtained (117 mg, 72%): 1 H NMR (DMSO- d_6 , 400 MHz) δ 7.50 (s, 1H, H-8), 6.58 (s, 2H, NH₂-6), 6.13 (m, 1H, H-3'), 5.96 (m, 1H, H-2'), 5.74 (m, 2H, OH and H-1'), 5.49 (m, 1H, H-4'), 5.01 (s, 2H, NH₂-2), 2.20–2.09 (m, 2H, H-5'); 13 C NMR (CDCl₃, 100 MHz) δ 161.84, 157.57, 152.6, 140.99 137.27, 132.83, 114.49, 76.64 60.10, 42.48; mass (EI) m/z: 232 (M⁺), 214, 151, 134, 108; HRMS (EI) calcd for $C_{10}H_{12}N_6O$ 232.1073. Found: 232.1079.

5.1.5. 9-[(1/R,4/S)-4]-Fluoro-2'-cyclopenten-1'-yll-9-H-2aminoadenine (14). This compound was prepared by an analogous method for the preparation of compound 11. To a stirred solution of compound 13 (190 mg, 817 μ mol) in CH₂Cl₂ (36 mL) at 0 °C, DAST (500 μ L, 3.77 mmol) was added with stirring for 1 h. The mixture was poured into saturated aqueous NaHCO₃ and then the aqueous phase was extracted with CHCl₃. dried with Na₂SO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography eluting with CHCl₃/MeOH (50:1–35:1). The fractions were evaporated under reduced pressure. Compound **14** was obtained (60.4 mg, 32%): mp 226–227 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.57 (s, 1H, H-8), 6.35 (m, 1H, H-3'), 6.25 (m, 1H, H-2'), 5.58-5.46 (m, 4H, H-1', H-4' and NH₂-6), 4.76 (s, 2H, NH₂-2), 3.04-2.93 (m, 1H, H-5'), 2.15–2.03 (m, 1H, H-5'); ¹³C NMR (CDCl₃, 100 MHz) δ 159.95, 156.02, 151.46, 136.45, 136.42, 135.94 (d, J = 64.2), 134.47 (d, J = 18.1), 95.17 (d, J = 174.4), 55.70 (d, J = 2.4), 39.11 (d, J = 21.4); mass (EI) m/z: 234 (M⁺), 214, 213, 188, 150; HRMS (EI) calcd for C₁₀H₁₁FN₆ 234.1029. Found: 234.1024; Anal. Calcd for $C_{10}H_{11}FN_6.6/13$ H_2O : C, 49.84; H, 4.91; N, 34.87. Found: C, 50.09; H, 4.75; N, 34.52.

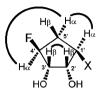
5.1.6. 9-[(1'R,2'S,3'R,4'S)-2',3'-Dihydroxy-4'-fluorocyclopentan-1'-yl|-9-H-2-aminoadenine (5). This compound was prepared by an analogous method for the preparation of compound 4. To a stirred solution of compound **14** (44 mg, 0.164 mmol) and NMO (48 mg, 411 μmol) in THF (2.4 mL) and H₂O (0.24 mL), 2% OsO₄ solution (416 µL, 32 µmol) was added and stirred at room temperature for 19 h. The mixture was evaporated under reduced pressure and the residue was purified by silica gel column chromatography eluting with CHCl₃/MeOH (20:1–8:1). The fractions were evaporated under reduced pressure. The crystallization from EtOAc gave compound 5 (27.7 mg, 63%): mp 124–126 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 7.67 (s, 1H, H-8), 6.54 (s, 2H, NH₂-6), 5.62 (s, 2H, NH₂-2), 5.16 (m, 2H, OH), 4.71 (m, 1H, H-4'), 4.41 (q, 1H, H-1'), 4.37(m, 1H, H-2'), 3.96 (m, 1H, H-3'), 2.55 (m, 1H, H-5' $_{\alpha}$), 2.03 (m, 1H, H-5'_β); DIFNOE: H-1' (H-5'₂: 4.8%), H-3' (H-2': 3.4%), H-4' (H-5'_α: 4.3%), 13 C NMR (DMSO- 13 C) 100 MHz) δ 159.98, 156.14, 152.06, 136.19, 113.59, 95.37 (d, J = 176.9), 73.79 (d, J = 1.8), 73.59, 56.76, 33.65 (d, J = 22.2); mass (EI) m/z: 268 (M⁺), 251, 231, 214, 192; HRMS (EI) calcd for $C_{10}H_{13}FN_6O_2$ found: 268.1089; Anal. Calcd C₁₀H₁₃FN₆O₂·4/15 EtOAc: C, 45.56; H, 5.23; N, 28.81. Found: C, 45.26; H, 5.50; N, 28.84.

5.1.7. 9-[(1'R,4'R)-4'-Fluoro-2'-cyclopenten-1'-yl]-9-*H*adenine (17). This compound was prepared by an analogous method for the preparation of compound 11. To a stirred solution of compound 16 (185 mg, 850 µmol) in CH₂Cl₂ (39 mL) at 0 °C, DAST (550 µL, 4.2 mmol) was added, and the mixture was stirred for 1 h. The mixture was poured into aqueous saturated NaHCO3 and then the aqueous phase was extracted with CHCl₃, dried with Na₂SO₄, filtered, and evaporated. The residue was purified by silica gel column chromatography eluting with hexane/EtOAc (45:1) and then the fractions were evaporated under reduced pressure. Compound 17 was obtained (91 mg, 49%): mp 199–200 °C; ¹H NMR (CDCl₃, 400 MHz) δ 8.37 (s, 1H, H-2), 7.71 (s, 1H, H-8), 6.41 (m, 1H, H-3'), 6.33 (m, 1H, H-2'), 5.97–5.87 (m, 2H, H-1' and H-4'), 5.53 (s, 2H, NH₂), 2.80 (m, 1H, H-5'), 2.40 (m, 1H, H-5'); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 156.01, 152.38, 149.18, 139.23, 138.27 (d, J = 4.2), 133.71 (d, J = 14.8), 119.14, 97.07 (d, J = 166.2), 58.59, 38.17 (d, J = 23.0); mass (EI) m/z: 219 (M⁺), 211, 199, 183, 173; HRMS (EI) calcd for C₁₀H₁₀FN₅: 219.0920, found: 219.0930; Anal. Calcd for C₁₀H₁₀FN₅: C, 54.79; H, 4.60; N, 31.95. Found: C, 54.74; H, 4.52; N, 31.84.

5.1.8. 9- $\int (1/R, 2/S, 3/R, 4/S) - 2/3$ -Dihydroxy-4'-fluorocyclopentan-1'-yl]-9-H-adenine (6). This compound was prepared by an analogous method for the preparation of compound 4. To a stirred solution of compound 17 $(28.\hat{6} \text{ mg}, 130 \,\mu\text{mol})$ and NMO $(40 \,\text{mg}, 342 \,\mu\text{mol})$ in THF (1.9 mL) and H_2O (190 μ L), 2% OsO₄ solution (0.33 mL, 26 µmol) was added and stirred at room temperature for 22 h. The mixture was evaporated under reduced pressure and the residue was purified by silica gel column chromatography eluting with CHCl₃/MeOH (30:1–8:1). Compound **6** was obtained (25.7 mg, 78%): mp 126 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.18 (s, 1H, H-2), 8.12 (s, 1H, H-8), 7.18 (s, 2H, NH₂), 5.47 (d, J = 5.6, 1H, OH), 5.35 (d, J = 4.0, 1H, OH), 5.10 (m, 1H, H-1'), 5.04 (m, 1H, H-4'), 4.98 (m, 1H, H-1'), 4.15 (dt, 1H, H-3'), 4.07 (dd, 1H, H-4'), 2.74 (m, 1H, H-5′_a), 2.31 (m, 1H, H-5′_β); DIFNOE: H-1′ (H-5′₂: 5.8%), H-3′ (H-2′: 4.8%, H-4′: 4.8%), H-4′ (H-5′_β: 4.6%), 13 C NMR (DMSO- d_6 , 100 MHz) δ 155.89, 152.11, 149.60, 140.40, 118.41, 97.68 (d, J = 176.0), 77.04 (d, J = 22.2), 71.99 (d, J = 7.4), 52.31, 33.77 (d, J = 23.0); mass (EI) m/z: 253 (M⁺), 236, 218, 204, 192; HRMS (EI) calcd for C₁₀H₁₂FN₅O₂ 253.0975. Found: 253.0984; Anal. Calcd for C₁₀H₁₂FN₅O₂·9/10H₂O: C, 44.58; H, 5.16; N, 25.99. Found: C, 44.54; H, 5.20; N, 25.94.

5.1.9. 9-[(1'R,4'S)-4'-Hydroxy-2'-cyclopenten-1'-yl]-9-H-2-aminoadenine (19). This compound was prepared by an analogous method for the preparation of compound 13. Compound 18 (166 mg, 660 μ mol) was treated with NH₃ in 2-propanol (50 mL) at 100 °C in a sealed tube for 48 h. The reaction mixture was evaporated under reduced pressure and purified by silica gel column chromatography eluting with CHCl₃/MeOH (30:1–8:1). Compound 19 was obtained (150 mg, 98%): ¹H NMR (DMSO- d_6 , 400 MHz) δ 7.63 (s, 1H, H-8), 6.67 (s, 2H, NH₂-6), 6.13 (m, 1H, H-3'), 5.92 (m, 1H, H-2'), 5.74 (m, 2H, NH₂-2), 5.45 (m, 1H, OH), 5.22 (m, 1H, H-

1'), 4.09 (m, 1H, H-4'), 2.81 (m, 1H, H-5'), 1.62 (m, 1H, H-5'); Anal. Calcd for $C_{10}H_{12}N_6O\cdot11/10H_2O$: C, 47.65; H, 5.68; N, 33.34. Found: C, 47.80; H, 5.51; N, 33.19.


5.1.10. 9-[(1'R,4'R)-4'-Fluoro-2'-cyclopenten-1'-yl]-9-H-**2-aminoadenine** (20). This compound was prepared by an analogous method for the preparation of compound 19. To a stirred solution of compound 19 (204 mg, 880 μ mol) in CH₂Cl₂ (25 mL) at 0 $^{\circ}$ C, DAST (590 μ L, 4.47 mmol) was added and stirred for 1 h at rt. The mixture was poured into saturated aqueous NaHCO₃ and then the aqueous phase was extracted with CHCl₃, dried with Na₂SO₄, filtered and evaporated. The residue was purified by silica gel column chromatography eluting with CHCl₃/MeOH (40:1–15:1) and then fractions were evaporated under reduced pressure. Compound 20 was obtained (126 mg, 61%): mp 191–192 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 7.58 (s, 1H, H-8), 6.67 (s, 1H, NH₂-6), 6.32 (m, 2H, H-2' and H-3'), 6.06 (m, 1H, H-1'), 5.78 (s, 1H, NH₂-2), 5.61 (s, 1H, H-4'), 2.91 (m, 1H, H-5'), 1.94 (m, 1H, H-5'); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 160.08, 156.07, 151.46, 138.25 (d, J = 9.8), 135.42, 133.65 (d, J = 14.8), 113.41, 97.15 (d, J = 166.2), 57.66, 38.29 (d, J = 23.9); mass (EI) m/z: 234 (M⁺), 214, 213, 188, 171; HRMS (EI) calcd for C₁₀H₁₁FN₆ 234.1029. Found: 234.1025; Anal. Calcd for C₁₀H₁₁FN₆·1/2 H₂O: C, 49.38; H, 4.97; N, 34.55. Found: C, 49.18; H, 4.62; N, 34.48.

9-[(1'R,2'S,3'R,4'S)-2',3'-Dihydroxy-4'-fluoro-5.1.11. cyclopentan-1'-yl]-9-H-2-aminoadenine (7). This compound was prepared by an analogous method for the preparation of compound 4. To a stirred solution of compound **20** (97.5 mg, 416 µmol) and NMO (85.6 mg, 750 μ mol) in THF (25 mL) and H₂O (2.5 mL), 2% OsO₄ solution (491 µL, 41.3 µmol) was added and stirred at room temperature for 22 h. The mixture was evaporated under reduced pressure and the residue was purified by silica gel column chromatography eluting with CHCl₃/MeOH (20:1–12:1). The fractions were evaporated under reduced pressure. The crystallization from AcOEt gave compound 7 (106 mg, 95%): mp 143-144 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 8.31 (s, 1H, H-8), 6.63 (s, 2H, NH₂-6), 5.74 (s, 2H, NH₂-2), 5.39 (m, 2H, OH), 5.02 (m, 1H, H-4'), 4.86 (m, 1H, H-1'), 4.09 $(m, 1H, H-3'), 4.02 (m, 1H, H-2'), 2.65 (m, 1H, H-5'_{\alpha}),$ 2.22 (m, 1H, H-5'_B); DIFNOE: H-1' (H-5'_{α}: 5.8%), H-3' $(H-2': 4.8\%, H-4': 4.8\%), H-4' (H-5'_{\beta}: 4.6\%), ^{13}C NMR$ (DMSO- d_6 , 100 MHz) δ 159.94, 155.99, 151.77, 137.03, 112.74, 97.88 (d, J = 175.3), 77.29 (d, J = 22.2), 72.04 (d, J = 7.4), 51.87, 33.88 (d, J = 23.0); mass (EI) m/z: 268 (M⁺), 251, 231, 207, 192; HRMS (EI) calcd for C₁₀H₁₃FN₆O₂ 268.1084, found: 268.1090; Anal. Calcd for C₁₀H₁₁FN₆·9/20 EtOAc: C, 46.03; H, 5.43; N, 27.30. Found: C, 46.28; H, 5.67; N, 27.41.

5.2. NOE correlation

NOE analysis was performed to assign the configuration of each substituent on cyclopentane ring. For 4'- β -fluorinated compounds, a strong NOE, [H-1' and H-5' $_{\alpha}$] and [H-4' and H-5' $_{\alpha}$] which showed 1',4'-cis relationship, was observed. Furthermore, we did not find any significant

NOE [H-1' and H-2'] and [H-3' and H-4'], and find that of [H-2' and H-3']. According to this result, 2'- and 3'-hydroxyl groups located α face. On the other hand, for 4'- α -fluorinated compounds, strong NOE, [H-1' and H-5' $_{\alpha}$], [H-2' and H-3'], [H-3' and H-4'], and [H-4'andH-5' $_{\beta}$] were assigned to 1',4'-trans relationship and α face stereochemicals of 2'- and 3'-hydroxyl groups and 4' fluorine substituent.

- 4 X = adenine5 X = 2-aminoadenine
- 6 X = adenine7 X = 2-aminoadenine

5.3. Enzyme assay

In the synthetic direction, the enzyme assay was a modification of an earlier method. The enzyme was incubated with 100 mM adenosine, 5 mM DL-homocysteine, and inhibitors on 0.2 mL of 10 mM potassium phosphate, pH 7.2, buffer at 30 °C for 2 min in the standard assay system. The reaction was started by the addition of 3 mL SAH hydrolase (human: 0.43 µg, *P. falciparum*: 0.54 µg) and terminated by the addition of 20 µL of 0.67 N HCl. The reaction mixture was kept on ice until the HPLC analysis. The mixture was analyzed for SAH by a Shimadzu HPLC system. In the synthetic reaction, one unit of SAH hydrolase was defined as the amount synthesizing 1 mmol of SAH/min at 30 °C.

Acknowledgment

This research was in part supported by Grants-in-Aid for Scientific Research on Priority Area No. 16017239 (to Y. K).

References and notes

- 1. Crimmins, M. T. Tetrahedron 1998, 54, 9229.
- Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S. R.; Earl, R. A.; Guedj, R. Tetrahedron 1994, 50, 10611.
- 3. De Clercp, E. Nucleosides Nucleotides 1988, 17, 625.
- 4. Hiraoka, O.; Satake, H.; Iguchi, S.; Matsuda, A.; Ueda, T.; Wataya, Y. Biochem. Biophys. Res. Commun. 1986, 3, 1114.
- Saso, Y.; Conner, E. M.; Teegarden, B. R.; Yuan, C. S. J. Pharmacol. Exp. Ther. 2001, 296, 106.
- Wolos, J. A.; Frondorf, K. A.; Babcock, G. F.; Stripp, S. A.; Bowlin, T. L. Cell Immunol. 1993, 149, 402.
- Nakanishi, M.; Iwata, A.; Yatome, C.; Kitade, Y. J. Biochem. 2001, 129, 101.
- 8. Kitade, Y.; Kojima, H.; Zulfiqur, F.; Kim, H. S.; Wataya, Y. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3963.
- 9. Borthwick, A. D.; Butt, S.; Biggadike, K.; Exall, A. M.; Roberts, S. M.; Youds, P. M.; Kirk, B. E.; Booth, B. R.; Cameron, J. M.; Cox, S. W.; Marr, C. L. P; Shill, M. D. *J. Chem. Soc., Chem. Commun.* **1988**, *10*, 656.

- Borthwick, A. D.; Kirk, A. D.; Biggadike, K. B.; Exall, A. M.; Butt, S.; Roberts, S. M.; Knight, D. J.; Coates, J. A. V.; Ryan, M. J. Med. Chem. 1991, 34, 907.
- Hedge, V. R.; Seley, K. L.; Schneller, S. W.; Elder, T. J. J. Org. Chem. 1998, 63, 7092.
- 12. Siddiqi, S. M.; Chen, X.; Schnellar, S. W.; Ikeda, S.; Snoeck, R.; Andrrei, G.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1994, 37, 1382.
- Wolf, M. S.; Lee, Y.; Bartlett, W. J.; Borcherding, D. R.; Borchardt, R. T. J. Med. Chem. 1992, 35, 1782.
- Siddiqi, S. M.; Oertel, F. P.; Chen, X.; Schneller, S. W. J. Chem. Soc., Chem. Commun. 1993, 10, 708.
- (a) Kitade, Y.; Kozaki, A.; Yatome, Y. Tetrahedron Lett. 2001, 42, 433; (b) Kitade, Y.; Kozaki, A.; Miwa, T.; Nakanishi, M. Tetrahedron 2002, 58, 1271.

- 16. Siddiq, S. M.; Chen, X.; Schneller, S. W. Nucleosides Nucleotides 1993, 12, 267.
- 17. (a) Mitsunobu, O. Synthesis 1981, 1; (b) Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017.
- 18. Middleton, W. J. J. Org. Chem. 1975, 40, 574.
- 19. Poli, G. Tetrahedron Lett. 1989, 30, 7385.
- Trost, B. M.; Kuo, G.-H.; Benneche, T. J. J. Am. Chem. Soc. 1988, 110, 621.
- Rajappan, V.; Schneller, S. W.; Williams, S. L.; Kern, E. R. Bioorg. Med. Chem. 2002, 10, 883.
- Gomi, T.; Date, T.; Osawa, H.; Fujioka, M.; Aksamit, R. R., ; Backlund, P. S., Jr.; Cantoni, G. L. J. Biol. Chem. 1989, 264, 16138.
- Tanaka, N.; Nakanishi, M.; Kusakabe, Y.; Shiraiwa, K.; Yabe, S.; Ito, Y.; Kitade, Y.; Nakamura, KT. *J. Mol. Biol.* 2004, 343, 1007.